top of page

PUBLICATIONS

 

Gulbinaite, R., Nazari, M.,Rule, M. E., Bermudez-Contreras, E. J., Cohen, M.X, Mohajerani, M. (2023). Spatiotemporal resonance in mouse primary visual cortex. biorXiv

Chota, S., VanRullen, R., Gulbinaite, R., (2023). Random Tactile Noise Stimulation Reveals Beta-Rhythmic Impulse Response Function of the Somatosensory System. Journal of Neuroscience 43 (17), 3107-3119

 

Gulbinaite, R., Roozendaal, D. H. M., & VanRullen, R. (2019). Attention differentially modulates the amplitude of resonance frequencies in the visual cortex. NeuroImage 203:116146

MATLAB code: https://osf.io/7s2vp/

Duprez, J., Gulbinaite, R., Cohen, M.X (2018).  Midfrontal theta phase coordinates behaviorally relevant brain computations during response conflict. NeuroImage 207:116340

Gulbinaite, R., van Viegen, T., Wieling, M., Cohen, M.X, VanRullen, R. (2017). Individual alpha peak frequency predicts 10 Hz flicker effects on selective attention. Journal of Neuroscience 37(42):10173-10184

R code: https://figshare.com/articles/Paper_package_Gulbinaite_et_al_zip/5211442

Gulbinaite, R., Ilhan, B., VanRullen, R. (2017). The triple-flash illusion reveals a driving role of alpha-band reverberations in visual perception. Journal of Neuroscience 37(30):7219-7230

Vissers, M., Gulbinaite, R., van den Bos, T., Slagter, H.A. (2017). Protecting visual short-term memory during maintenance: Attentional modulation of target and distractor representations. Scientific Reports 7(1): 4061

Cohen, M.X, Gulbinaite, R. (2016). Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation. NeuroImage 147:43-56.

MATLAB code and Sample Data: https://osf.io/3qbxw/

Gulbinaite, R., Van Rijn, H., Cohen, M.X. Fronto-parietal network oscillations reveal relationship between working memory capacity and cognitive control.  Frontiers in Human Neuroscience. 8:761.

Gulbinaite, R., Johnson, A., De Jong, R., Morey, C.C., Van Rijn, H. (2014). Dissociable mechanisms underlying individual differences in visual working memory capacity. NeuroImage 99(1), 197-206.

Cohen, M.X, Gulbinaite, R. (2013). Five methodological challenges in cognitive electrophysiology. NeuroImage 85(2), 702–710.

Gulbinaite, R., Johnson, A. (2013) Working memory capacity predicts conflict-task performance. Quarterly Journal of Experimental Psychology 67(7), 1383-1400. 

 

Book chapters:

Johnson, A.*, Gulbinaite, R. *(2012). Performance Monitoring and Error-related Brain Activity. In Neuroergonomics: A Cognitive Neuroscience Approach to Human Factors and Ergonomics (Johnson, A. & Proctor, R.W. Ed.) * equal contribution

PhD Thesis:

Gulbinaite, R. (2014). Variations in working memory capacity: From cognition to brain networks.

AD-HOC REVIEWER

LECTURE NOTES

NMA (National Student Academy), Nida, Lithuania

  • Introduction to Zombiology (2012).

  • Measuring love (2012). 

  • Gender equality and gender differences in neuroscience (2011). 

  • How does brain learn from mistakes? (2011). 

  • Signal detection theory or how we make decisions (2010).

bottom of page